Projects

Under the guidance of our Scientific Advisory Board through a carefully managed grants process, FPWR selects research projects based on the collaborative input of researchers and parents, choosing projects that are both scientifically meritorious and highly relevant for individuals with PWS and their families.

Search Projects

Filter projects

Adult Spine Alignment in Prader-Willi syndrome

Funded Year: 2020

Dr. van Bosse and his team will define the typical posture of grown children and adults with PWS without spinal deformities (e.g., scoliosis). These results will be compared to results from the general population will be used to create guidelines for the alignment of the spine after spinal surgery in children with PWS.

Neurohormonal Controls of Energy Balance in the MAGEL2-Deficient Rat

Funded Year: 2020

Dr. Mietlicki-Baase and her team will investigate neural/neurohormonal control of energy balance in a rat model that lacks Magel2, a gene that is lost or mutated in Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS). They will test feeding motivation behaviors and examine the brain areas that control energy balance. They will also...

Role of MAGEL2 in melanocortinergic circuits and feeding regulation

Funded Year: 2020

Dr. Jo and his team are working on appetite-controlling pathways in the brain. Research has shown that mice lacking the Magel2 gene have fewer and less functional proopiomelanocortin (POMC) neurons, which are important in regulating appetite. These neurons appear to work through the amygdala, which is a part of the brain that is important in...

Defining impaired neuronal architecture in the Snord116del mouse model for Prader-Willi Syndrome

Funded Year: 2020

The cognitive challenges experienced by many individuals with PWS remains poorly understood. Pilot data obtained in the Wells laboratory indicates that loss of expression of PWS-region gene, Snord116, leads to reduced length and branching of a certain type of neuron in the cortex of the brain. In this project they will use specialized techniques...

Guanfacine XR for Aggression and Self Injury in PWS A Double Blind Placebo Controlled Trial

Funded Year: 2020

Guanfacine XR (brand name Intuniv) is a medication for ADHD that improves impulse control. Dr. Singh has noted improvements in aggression and self-injury in PWS patients in his practice when using this medication. Here, he will perform a controlled clinical trial to evaluate the efficacy of guanfacine for treating these aspects of PWS, and also...

Unraveling the mechanism of PWS by molecular dissection of driver genes in hypothalamic neuron model

Funded Year: 2020

Dr. Tai and his team have used CRISPR genome editing techniques to generate a series of PWS deletion stem cells (small deletion, large deletion and single genes). Here, they will drive the cells to become hypothalamic neurons in a lab dish, then apply advanced technologies to study the cellular properties of these PWS neurons compared to typical...

donate to FPWR for PWS research